↳ ITRS
↳ ITRStoIDPProof
z
f(x, y) → Cond_f(>@z(x, y), x, y)
Cond_f(TRUE, x, y) → f(x, +@z(y, 1@z))
f(x0, x1)
Cond_f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(x, y) → Cond_f(>@z(x, y), x, y)
Cond_f(TRUE, x, y) → f(x, +@z(y, 1@z))
(0) -> (1), if ((+@z(y[0], 1@z) →* y[1])∧(x[0] →* x[1]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* TRUE))
f(x0, x1)
Cond_f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((+@z(y[0], 1@z) →* y[1])∧(x[0] →* x[1]))
(1) -> (0), if ((x[1] →* x[0])∧(y[1] →* y[0])∧(>@z(x[1], y[1]) →* TRUE))
f(x0, x1)
Cond_f(TRUE, x0, x1)
(1) (+@z(y[0], 1@z)=y[1]1∧>@z(x[1], y[1])=TRUE∧x[0]=x[1]1∧y[1]=y[0]∧x[1]=x[0] ⇒ COND_F(TRUE, x[0], y[0])≥NonInfC∧COND_F(TRUE, x[0], y[0])≥F(x[0], +@z(y[0], 1@z))∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(2) (>@z(x[1], y[1])=TRUE ⇒ COND_F(TRUE, x[1], y[1])≥NonInfC∧COND_F(TRUE, x[1], y[1])≥F(x[1], +@z(y[1], 1@z))∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(3) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥)∧1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(4) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥)∧1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧0 ≥ 0)
(5) (x[1] + -1 + (-1)y[1] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + (-1)y[1] + x[1] ≥ 0∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(6) (x[1] ≥ 0 ⇒ 0 ≥ 0∧2 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(7) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧2 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(8) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧2 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(F(x[0], +@z(y[0], 1@z))), ≥))
(9) (F(x[1], y[1])≥NonInfC∧F(x[1], y[1])≥COND_F(>@z(x[1], y[1]), x[1], y[1])∧(UIncreasing(COND_F(>@z(x[1], y[1]), x[1], y[1])), ≥))
(10) ((UIncreasing(COND_F(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) ((UIncreasing(COND_F(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) (0 ≥ 0∧(UIncreasing(COND_F(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0)
(13) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_F(>@z(x[1], y[1]), x[1], y[1])), ≥)∧0 ≥ 0∧0 = 0)
POL(COND_F(x1, x2, x3)) = 1 + (-1)x3 + x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(F(x1, x2)) = 2 + (-1)x2 + x1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = 2
F(x[1], y[1]) → COND_F(>@z(x[1], y[1]), x[1], y[1])
COND_F(TRUE, x[0], y[0]) → F(x[0], +@z(y[0], 1@z))
COND_F(TRUE, x[0], y[0]) → F(x[0], +@z(y[0], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
f(x0, x1)
Cond_f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
f(x0, x1)
Cond_f(TRUE, x0, x1)